VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD
 B.E. (C.S.E: CBCS) VI-Semester Main Examinations, January-2021
 Artificial Intelligence

Time: $\mathbf{2}$ hours
Max. Marks: 60
Note: Answer any NINE questions from Part-A and any THREE from Part-B
Part-A ($9 \times 2=18$ Marks)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline b) \& \multicolumn{5}{|l|}{Write a note on 'Problem solving agents' Give also an elaborative example} \& 06 \& 2 \& 1 \& 2

\hline \multirow[t]{2}{*}{14. a)

b)} \& \multicolumn{5}{|l|}{Assume a Two player Tic-Tac-Toe game, where one of the payers is the human. Give some adversarial search strategies to be adopted by the rational agent to play against human.} \& 10 \& 2 \& 2 \& 2

\hline \& \multicolumn{5}{|l|}{| Classify the following as the statements of propositional logic or not. |
| :--- |
| The reactor is on; |
| What is the value of $2+3$? |
| The wing-flaps are up; |
| John Major is prime minister; |
| Are you going out somewhere?; |
| Sun rises in the east. |} \& 04 \& 3 \& 2 \& 2

\hline 15. a) \& 1. 'None of
2. 'Some
Represent
necessary \& my frien
numbe
he abo
dicates \& perfect', \& \& order logic. Assume necessary \& 10 \& 3 \& 3 \& 2

\hline b) \& \multicolumn{5}{|l|}{Differentiate forward and backward chaining with a simple example} \& 04 \& 1 \& 3 \& 2

\hline 16. a) \& \multicolumn{5}{|l|}{SUDOKU is the game of writing numbers in the grid chart of size 9 X 9. This bigger grid chart is divided into 9 sub grids of size 3×3. The task is to write numbers $1,2,3,4,5,6,7,8,9$ into these 81 cells of the grid chart such that, No repeated number should appear in either a row, or a column, or a sub grid. Express his problem as the CSP (Constraint Satisfaction Problem) using common representation. Assume necessary details} \& 10 \& 3 \& 4 \& 2

\hline b) \& \multicolumn{5}{|l|}{Explain the Heuristics used in planning.} \& 04 \& 2 \& 4 \& 2

\hline \multirow[t]{5}{*}{17. a)} \& \& Tootha \& \& \neg Toot \& \& 10 \& 3 \& 5 \& 2

\hline \& \& Catch \& \neg Catch \& Catch \& \neg Catch \& \& \& \&

\hline \& Cavity \& 0.108 \& 0.012 \& 0.072 \& 0.008 \& \& \& \&

\hline \& \neg Cavity \& 0.016 \& 0.064 \& 0.144 \& 0.576 \& \& \& \&

\hline \& \multicolumn{5}{|l|}{| Given in the above table are the probabilities of all atomic events of a full joint distribution that specifies the scenario of appearance of a tooth ache and the presence of a cavity. Based on the table find out the following probabilities |
| :--- |
| 1. Marginal probability of the presence of the cavity, P (cavity) |
| 2. The conditional probability P (cavity \mid toothache) |
| 3. The conditional probability $\mathrm{P}(\neg$ cavity $\mid \rightarrow$ toothache) |
| 4. The conditional probability P (cavity \mid-toothache) |} \& \& \& \&

\hline b) \& \multicolumn{5}{|l|}{List out the exact and approximate inferences in Bayesian networks with proper real time examples.} \& 04 \& 2 \& 5 \& 2

\hline
\end{tabular}

18. a) While formulating a well-defined problem, important components to be addressed are 'Initial state, Action, transition, Goal test and path costing'. Explain each one of them formally with respect to ' 8 -puzzle problem'
b) Explain the game 'Wumpus world' with at least four rules
19. Answer any two of the following:
a) Explain each of the following with a simple example

- Universal Generalization
- Universal Instantiation
- Existential Instantiation
- Existential introduction
b) Explain how node consistency, Arc consistency and path consistency used in constrain propagation with example.
c) A bag B1 contains 4 white and 6 black balls while another Bag B2 contains 4 white and 3 black balls. One ball is drawn at random from one of the bags, and it is found to be black. Find the probability that it was drawn from Bag B1 (Hint: Use Bayes' Theorem).

```
10
```

$04 \quad 2 \quad 2 \quad 2$
$\begin{array}{llll}7 & 2 & 3 & 2\end{array}$
$\begin{array}{llll}7 & 2 & 4 & 2\end{array}$
$\begin{array}{llll}7 & 2 & 5 & 2\end{array}$

M: Marks; L: Bloom's Taxonomy Level; CO: Course Outcome; PO: Programme Outcome

S. No.	Criteria for questions	Percentage
1	Fundamental knowledge (Level-1 \& 2)	60
2	Knowledge on application and analysis (Level-3 \& 4)	40
3	*Critical thinking and ability to design (Level-5 \& 6) (*wherever applicable)	

